Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Environ Sci (China) ; 143: 164-175, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38644014

RESUMEN

Utilizing CO2 for bio-succinic acid production is an attractive approach to achieve carbon capture and recycling (CCR) with simultaneous production of a useful platform chemical. Actinobacillus succinogenes and Basfia succiniciproducens were selected and investigated as microbial catalysts. Firstly, the type and concentration of inorganic carbon concentration and glucose concentration were evaluated. 6 g C/L MgCO3 and 24 g C/L glucose were found to be the optimal basic operational conditions, with succinic acid production and carbon yield of over 30 g/L and over 40%, respectively. Then, for maximum gaseous CO2 fixation, carbonate was replaced with CO2 at different ratios. The "less carbonate more CO2" condition of the inorganic carbon source was set as carbonate: CO2 = 1:9 (based on the mass of carbon). This condition presented the highest availability of CO2 by well-balanced chemical reaction equilibrium and phase equilibrium, showing the best performance with regarding CO2 fixation (about 15 mg C/(L·hr)), with suppressed lactic acid accumulation. According to key enzymes analysis, the ratio of phosphoenolpyruvate carboxykinase to lactic dehydrogenase was enhanced at high ratios of gaseous CO2, which could promote glucose conversion through the succinic acid path. To further increase gaseous CO2 fixation and succinic acid production and selectivity, stepwise CO2 addition was evaluated. 50%-65% increase in inorganic carbon utilization was obtained coupled with 20%-30% increase in succinic acid selectivity. This was due to the promotion of the succinic acid branch of the glucose metabolism, while suppressing the pyruvate branch, along with the inhibition on the conversion from glucose to lactic acid.


Asunto(s)
Dióxido de Carbono , Ácido Succínico , Dióxido de Carbono/metabolismo , Ácido Succínico/metabolismo , Actinobacillus/metabolismo , Glucosa/metabolismo
2.
J Environ Manage ; 348: 119379, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37898048

RESUMEN

This study investigated the optimum pH, temperature, and food-to-microorganisms (F/M) ratio for regulating the formation of electron acceptors and donors during acidogenic fermentation to facilitate medium-chain carboxylic acids (MCCAs) production from food waste. Mesophilic fermentation at pH 6 was optimal for producing mixed volatile fatty acids (719 ± 94 mg COD/g VS) as electron acceptors. Under mesophilic conditions, the F/M ratio (g VS/g VS) could be increased to 6 to generate 22 ± 2 g COD/L of electron acceptors alongside 2 ± 0 g COD/L of caproic acid. Thermophilic fermentation at pH 6 was the best condition for producing lactic acid as an electron donor. However, operating at F/M ratios above 3 g VS/g VS under thermophilic settings significantly reduced lactic acid yield. A preliminary techno-economic evaluation revealed that converting lactic acid and butyric acid generated during acidogenic fermentation to caproic acid was the most profitable food waste valorization scenario and could generate 442-468 €/t VS/y. The results presented in this study provide insights into how to tailor acidogenic fermentation reactions to desired intermediates and will help maximize MCCAs synthesis.


Asunto(s)
Caproatos , Eliminación de Residuos , Fermentación , Alimentos , Ácidos Carboxílicos , Electrones , Ácidos , Ácido Láctico
3.
Sci Total Environ ; 857(Pt 1): 159333, 2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36220479

RESUMEN

Lignocellulosic materials (LCM) have garnered attention as feedstocks for second-generation biofuels and platform chemicals. With an estimated annual production of nearly 200 billion tons, LCM represent an abundant source of clean, renewable, and sustainable carbon that can be funneled to numerous biofuels and platform chemicals by sustainable microbial bioprocessing. However, the low bioavailability of LCM due to the recalcitrant nature of plant cell components, the complexity and compositional heterogeneity of LCM monomers, and the limited metabolic flexibility of wild-type product-forming microorganisms to simultaneously utilize various LCM monomers are major roadblocks. Several innovative strategies have been proposed recently to counter these issues and expedite the widespread commercialization of biorefineries using LCM as feedstocks. Herein, we critically summarize the recent advances in the biological valorization of LCM to value-added products. The review focuses on the progress achieved in the development of strategies that boost efficiency indicators such as yield and selectivity, minimize carbon losses via integrated biorefinery concepts, facilitate carbon co-metabolism and carbon-flux redirection towards targeted products using recently engineered microorganisms, and address specific product-related challenges, to provide perspectives on future research needs and developments. The strategies and views presented here could guide future studies in developing feasible and economically sustainable LCM-based biorefineries as a crucial node in achieving carbon neutrality.


Asunto(s)
Biocombustibles , Lignina , Biomasa , Lignina/metabolismo , Carbono
4.
J Environ Manage ; 319: 115719, 2022 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-35849928

RESUMEN

Efficient and harmless disposal of landfill leachate has attracted increasing attention. In this study, the bio-electro-Fenton method was investigated and developed to degrade the organic compounds in landfill leachate by hydroxyl radical oxidation. The optimal operational parameters (i.e., pH and external voltage) of the bio-electro-Fenton system were detected. Under the conditions of pH 2, 0.6 V, the highest total chemical oxygen demand (COD) decrement efficiency was obtained (about 70%), with apparent removal constant at 6 h (kapp-6h) of about 0.12 h-1. Subsequently, to further increase the degradation efficiency, functionalized carbon black and functionalized carbon nanotube (FCNT) were prepared as catalysts for the cathode electrode modification. With 0.4 mg/cm2 FCNT coated on the cathode electrode, 91.3% of the organic compounds were degraded, remaining only 84 mg/L COD (kapp-6h = 0.24 h-1). In all the reactors, the COD was mainly decreased in 0-6 h, contributing to over 68% of the total degradation efficiency. In the bio-electro-Fenton system, the bio-anode electrode could enhance H2O2 production and the conversion between Fe2+ and Fe3+ by strengthening electrons generation and transportation via the oxidation of organics by biofilms (dominant with Geobacter) covered on the carbon brush.


Asunto(s)
Contaminantes Químicos del Agua , Análisis de la Demanda Biológica de Oxígeno , Electrodos , Peróxido de Hidrógeno/química , Hierro/química , Compuestos Orgánicos , Oxidación-Reducción , Contaminantes Químicos del Agua/química
5.
Water Res ; 215: 118244, 2022 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-35259562

RESUMEN

Bioaugmentation is an attractive method to improve methane production (MP) in the anaerobic digestion (AD) process. In this study, to tackle the ammonia inhibition problem, a long-term (operating over 6 months) acclimatized consortia and a well-constructed consortia were selected as the bioaugmentation consortia for sequencing batch AD reactors fed with dairy manure and pig manure under mesophilic condition. Similar responses, in terms of the reactor performance and microorganisms structure to the different consortia, were observed with both manure kinds indicating that the effectiveness of bioaugmentation was mainly decided by the composition of the added consortia, not the feedstock. 39 - 49% increment in MP was obtained in the reactors bioaugmented with well-constructed consortia, which was higher than the acclimatized consortia (about 25% increment in MP). Both acetogenesis and methanogenesis (advantageous) steps were stimulated with well-constructed consortia bioaugmentation. According to key functional enzyme analysis, the increment of glycine hydroxymethyltransferase and phosphoglycerate mutase might be the critical point in the bioaugmented AD system. Based on the higher functional contribution rate of the well-constructed consortia bioaugmentation reactors, Methanosarcina could have expressed more comprehensive functions or performed stronger activities in different functions than Methanosaeta.


Asunto(s)
Amoníaco , Estiércol , Anaerobiosis , Animales , Biocombustibles , Reactores Biológicos , Metano , Porcinos
6.
Sci Total Environ ; 783: 147581, 2021 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-34088123

RESUMEN

This study evaluated the methanogenic performance of typical substrates (acetate, formate, H2/CO2, and glucose) under low and high ammonia levels and the Anaerobic Digestion Model No.1 (ADM1) was extended and modified for better simulation and understanding of the process. Formate-utilizing and hydrogen-utilizing methanogenesis showed stronger ammonia resistance than acetate-utilizing methanogenesis (13-23% vs. 34% decrease in methane production (MP)). Model extension, based on foundational experiments fed with three typical precursors (R2 > 0.92), was then validated with glucose degradation experiments, and satisfactory predictions of MP and total volatile fatty acids were obtained (R2 > 0.91). Based on the modified ADM1, the carbon fluxes of glucose degradation were determined, and formate-utilizing methanogenesis showed its importance with a 28-34% contribution of the total methanation, becoming the dominant pathway under high ammonia level. Formate-utilizing methanogenesis also had a thermodynamic advantage among the three pathways. 16S rRNA sequencing suggested a homology between the hydrogen-utilizing and formate-utilizing methanogens. Methanobacterium and Methanobrevibacter were found to be key methanogens, and their enrichment under high ammonia level confirmed the stronger ammonia tolerance of formate-utilizing and hydrogen-utilizing methanogenesis. The microbial characterization and modified ADM1 simulations supported each other.


Asunto(s)
Amoníaco , Dióxido de Carbono , Acetatos , Anaerobiosis , Formiatos , Metano , ARN Ribosómico 16S
7.
Water Environ Res ; 93(8): 1370-1380, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33528855

RESUMEN

The effect of pH regulation in phase I on hydrolysis and acidogenesis rate, metabolites production, microbial community, and the overall energy recovery efficiency during two-phase anaerobic digestion (AD) of food waste (FW) was investigated. pH strongly affected the acidogenesis rate and the yield of the fermentation products. The highest acidogenesis efficiency (60.4%) and total volatile fatty acids (VFA)/ethanol concentration (12.4 g/L) were obtained at pH 8 during phase I. Microbial community analysis revealed that Clostridium IV was enriched at pH 8, relating to the accumulation of butyrate. Also, Clostridium sensu stricto played a crucial role in hydrogen production and was abundant at pH 6, resulting in the highest hydrogen yield (212.2 ml/g VS). In phase II, the highest cumulative methane yield (412.6 ml/g VS) was obtained at pH 8. By considering the hydrogen and methane production stages, the highest energy yield (22.8 kJ/g VS, corresponding to a 76.4% recovery efficiency) was generated at pH 8, which indicates that pH 8 was optimal for energy recovery during two-phase AD of FW. Overall, the results demonstrated the possibility of increasing the energy recovery from FW by regulating the pH in the hydrolysis/acidogenesis phase based on the two-phase AD system. PRACTITIONER POINTS: pH 8 was suitable for hydrolysis, acidogenesis, and methanogenesis. High hydrogen yields were obtained at pH 5-8 (about 200 ml/d). Clostridium sensu stricto might have played a crucial role in hydrogen production. High methane production (about 400 ml/g VS) was obtained at pH 7-9. pH 8 was optimal for energy recovery from FW with an efficiency of 76.4% (22.8 kJ/g VS).


Asunto(s)
Alimentos , Eliminación de Residuos , Anaerobiosis , Reactores Biológicos , Concentración de Iones de Hidrógeno
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...